Singular Lévy measures	Aims and Assumptions	The Littlewood-Paley characteristic of Hölder spaces	Schauder's estimates	Sketch of proofs	Thanks
000000	00000	00000	000	0000000	0

Schauder's estimates for nonlocal equations with singular Lévy measures

Mingyan Wu¹

Based on a joint work with Zimo Hao1 and Guohuan Zhao

¹School of Mathematics and Statistics, Wuhan University

The 15th Workshop on Markov Processes and Related Topics

Jilin University, July 11-15, 2019

Singular Lévy measures	Aims and Assumptions	The Littlewood-Paley characteristic of Hölder spaces	Schauder's estimates	Sketch of proofs	Thanks	
000000	00000	00000	000	0000000	0	
Plan of this	talk					

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Singular Lévy measures

- **2** Aims and Assumptions
- **3** The Littlewood-Paley characteristic of Hölder spaces

4 Schauder's estimates

Sketch of proofs

Singular Lévy measures	Aims and Assumptions	The Littlewood-Paley characteristic of Hölder spaces	Schauder's estimates	Sketch of proofs	Thanks
000000	00000	00000	000	0000000	0

Part 1: Introduction

Singular Lévy measures	Aims and Assumptions	The Littlewood-Paley characteristic of Hölder spaces	Schauder's estimates	Sketch of proofs	Thanks O
Lévy measu	res				

Definition 1 (Lévy measures)

 ν is a Lévy measure on \mathbb{R}^d , if it is a σ -finte (positive) measure such that

$$\nu(\{0\}) = 0, \ \int_{\mathbb{R}^d} \left(1 \wedge |x|^2\right) \nu(\mathrm{d}x) < +\infty.$$

Definition 2 (*α***-stable Lévy measures)**

For $\alpha \in (0,2)$, Lévy measure $\nu^{(\alpha)}$ is an α -stable Lévy measure, if it has the polar coordinates form

$$\nu^{(\alpha)}(A) = \int_0^\infty \left(\int_{\mathbb{S}^{d-1}} \frac{\mathbf{1}_A(r\theta) \Sigma(\mathrm{d}\theta)}{r^{1+\alpha}} \right) \mathrm{d}r, \quad A \in \mathscr{B}(\mathbb{R}^d),$$

where Σ is a finite measure over the unit sphere \mathbb{S}^{d-1} (called spherical measure of $\nu^{(\alpha)}$).

Singular Lévy measures	Aims and Assumptions	The Littlewood-Paley characteristic of Hölder spaces	Schauder's estimates	Sketch of proofs	Thanks
00000	00000	00000	000	0000000	0
()) T (

α -stable Lévy measures

- Scaling property $\nu^{(\alpha)}(d(\lambda z)) = \lambda^{-\alpha} \nu^{(\alpha)}(dz)$ for any $\lambda > 0$.
- Moments property For any $\gamma_1 > \alpha > \gamma_2 \ge 0$,

$$\int_{\mathbb{R}^d} (|z|^{\gamma_1} \wedge |z|^{\gamma_2}) \nu^{(\alpha)}(\mathrm{d} z) < \infty.$$

Definition 3 (Non-degenerate Lévy measures)

One says that an α -stable Lévy measure $\nu^{(\alpha)}$ is non-degenerate if

$$\int_{\mathbb{S}^{d-1}} |\theta_0 \cdot \theta|^{\alpha} \Sigma(\mathrm{d}\theta) > 0 \quad \text{for every } \theta_0 \in \mathbb{S}^{d-1}$$

Singular Lévy measures	Aims and Assumptions	The Littlewood-Paley characteristic of Hölder spaces	Schauder's estimates	Sketch of proofs	Thanks
00000	00000	00000	000	0000000	0

Example 4 (Standard α -stable Lévy measures)

If Σ is rotationally invariant with $\Sigma(\mathbb{S}^{d-1}) = |\mathbb{S}^{d-1}|$, then $\nu^{(\alpha)}$ is the standard or strict α -stable Lévy measure and

$$\nu^{(\alpha)}(\mathrm{d}y) = \frac{\mathrm{d}y}{|y|^{d+\alpha}}.$$

The d-dimensional Lévy process associated with this Lévy mesaure is called dimensional α -stable process.

Singular Lévy measures	Aims and Assumptions	The Littlewood-Paley characteristic of Hölder spaces	Schauder's estimates	Sketch of proofs	Thanks
00000	00000	00000	000	0000000	0

Example 4 (Standard α -stable Lévy measures)

If Σ is rotationally invariant with $\Sigma(\mathbb{S}^{d-1}) = |\mathbb{S}^{d-1}|$, then $\nu^{(\alpha)}$ is the standard or strict α -stable Lévy measure and

$$\nu^{(\alpha)}(\mathrm{d}y) = \frac{\mathrm{d}y}{|y|^{d+\alpha}}.$$

The d-dimensional Lévy process associated with this Lévy mesaure is called ddimensional α -stable process.

• If $W_t = (W_t^1, \dots, W_t^d)$ is a d-dimensional Browinian Motion, then W_t^i are i.i.d 1-dimensional Browinian Motions.

Singular Lévy measures	Aims and Assumptions	The Littlewood-Paley characteristic of Hölder spaces	Schauder's estimates	Sketch of proofs	Thanks
00000	00000	00000	000	0000000	0

Example 4 (Standard α -stable Lévy measures)

If Σ is rotationally invariant with $\Sigma(\mathbb{S}^{d-1}) = |\mathbb{S}^{d-1}|$, then $\nu^{(\alpha)}$ is the standard or strict α -stable Lévy measure and

$$u^{(\alpha)}(\mathrm{d}y) = \frac{\mathrm{d}y}{|y|^{d+\alpha}}$$

The d-dimensional Lévy process associated with this Lévy mesaure is called dimensional α -stable process.

- If $W_t = (W_t^1, \dots, W_t^d)$ is a d-dimensional Browinian Motion, then W_t^i are i.i.d 1-dimensional Browinian Motions.
- Let $L_t = (L_t^1, \dots, L_t^d)$ be a d-dimensional α -stable process. L_t^i may not be independent or 1-dimensional standard α -stable processes.

Singular Lévy measures	Aims and Assumptions	The Littlewood-Paley characteristic of Hölder spaces	Schauder's estimates	Sketch of proofs	Thanks
00000	00000	00000	000	0000000	0

Example 4 (Standard α -stable Lévy measures)

If Σ is rotationally invariant with $\Sigma(\mathbb{S}^{d-1}) = |\mathbb{S}^{d-1}|$, then $\nu^{(\alpha)}$ is the standard or strict α -stable Lévy measure and

$$u^{(\alpha)}(\mathrm{d}y) = \frac{\mathrm{d}y}{|y|^{d+\alpha}}.$$

The d-dimensional Lévy process associated with this Lévy mesaure is called ddimensional α -stable process.

- If $W_t = (W_t^1, \dots, W_t^d)$ is a d-dimensional Browinian Motion, then W_t^i are i.i.d 1-dimensional Browinian Motions.
- Let $L_t = (L_t^1, \dots, L_t^d)$ be a d-dimensional α -stable process. L_t^i may not be independent or 1-dimensional standard α -stable processes.

Question

If $L_t^i, i = 1, \dots, d$ are i.i.d 1-dimensional standard α -stable processes, then what is $L_t = (L_t^1, \dots, L_t^d)$?

Singular Lévy measures	Aims and Assumptions	The Littlewood-Paley characteristic of Hölder spaces	Schauder's estimates	Sketch of proofs	Thanks
000000	00000	00000	000	0000000	0

Example 5 (Cylindrical α-stable Lévy measures)

If
$$\Sigma = \sum_{k=1}^{d} \delta_{e_k}$$
, where $e_k = (0, \dots, 1_{k_{th}}, \dots, 0)$, then

$$\nu^{(\alpha}(\mathrm{d}x) = \sum_{k=1}^{d} \delta_{e_k}(\mathrm{d}x) \frac{\mathrm{d}x_k}{|x_k|^{\alpha+1}},$$

called cylindrical α -stable Lévy measures. Moreover, this Lévy measure is associated with a d-dimensional Lévy process $(L_t^1, L_t^2, \cdots, L_t^d)$, where $L_t^1, L_t^2, \cdots, L_t^d$ are i.d.d 1-dimensional standard α -stable processes.

Singular Lévy measures	Aims and Assumptions	The Littlewood-Paley characteristic of Hölder spaces	Schauder's estimates	Sketch of proofs	Thanks
000000	00000	00000	000	0000000	0
T C	•				

Infinitesimal generators

• Infinitesimal generators

• Standard α -stable Lévy process with $\alpha \in (0, 1)$:

$$\mathscr{L}f(x) = \text{p.v.} \int_{\mathbb{R}^d} \frac{f(x+z) - f(x)}{|z|^{d+\alpha}} dz = \Delta^{\alpha/2} f(x).$$

• Cylindrical α -stable Lévy process with $\alpha \in (0, 1)$:

$$\mathscr{L}f(x) = \sum_{i=1}^{d} \text{p.v.} \int_{\mathbb{R}} \frac{f(x + ze_i) - f(x)}{|z|^{1+\alpha}} dz,$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

where $e_i = (0, ..., 1_{i_{th}}, ..., 0).$

Singular Lévy measures	Aims and Assumptions	The Littlewood-Paley characteristic of Hölder spaces	Schauder's estimates	Sketch of proofs	Thanks
00000	00000	00000	000	0000000	0
Fourier's m	ultinliers				

• Fourier's multipliers

Standard α-stable Lévy process:

$$\begin{split} \mathscr{F}(\mathscr{L}f)(\xi) &= |\xi|^{\alpha} \mathscr{F}f(\xi) = \mathscr{F}(\Delta^{\frac{\alpha}{2}}f)(\xi),\\ \text{where } \phi(\xi) &:= |\xi|^{\alpha} \in C^{\infty}(\mathbb{R}^{d} \setminus \{0\}). \end{split}$$

Cylindrical α-stable Lévy process:

$$\mathscr{F}(\mathscr{L}f)(\xi) = \sum_{i=1}^{d} |\xi_{i}|^{\alpha} \mathscr{F}f(\xi),$$

where $\phi(\xi) := \sum_{i=1}^{d} |\xi_{i}|^{\alpha} \in C^{\infty}(\mathbb{R}^{d} \setminus \cup_{i=1}^{d} \{x_{i} = 0\}).$

• Note It is more difficult to deal with cylindrical Lévy measues than standard Lévy measues.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Singular Lévy measures	Aims and Assumptions	The Littlewood-Paley characteristic of Hölder spaces	Schauder's estimates	Sketch of proofs	Thanks O
Our work					

• We want to show Schauder's estimates for the following nonlocal equations:

$$\partial_t u = \mathscr{L}^{(\alpha)}_{\kappa,\sigma} u + b \cdot \nabla u + f, \ u(0) = 0,$$
(2.1)

where $\mathscr{L}_{\kappa,\sigma}^{(\alpha)}$ is an α -stable-like operator with the form:

$$\mathscr{L}^{(\alpha)}_{\kappa,\sigma}u(t,x) := \int_{\mathbb{R}^d} (u(t,x+\sigma(t,x)z) - u(t,x) - \sigma(t,x)z^{(\alpha)} \cdot \nabla u)\kappa(t,x,z)\nu^{(\alpha)}(\mathrm{d}z),$$

where $\nu^{(\alpha)}$ is a non-degenerate α -stabe Lévy measure and $z^{(\alpha)} := z \mathbf{1}_{\{|z| \leqslant 1\}} \mathbf{1}_{\alpha=1} + z \mathbf{1}_{\alpha \in (1,2)}$.

• Schauder's estimates:

$$\|u\|_{\mathbf{C}^{\alpha+\beta}} \leqslant c \|f\|_{\mathbf{C}^{\beta}}.$$

- **PDE** Schauder's estimates play a basic role in constructing classical solutions for quasilinear PDEs.
- **SDE** The Schauder estimate can be used to solve the exisitence and uniqueness of the solution for SDE. (The Zvonkin transform)

Singular Lévy measures	Aims and Assumptions	The Littlewood-Paley characteristic of Hölder spaces	Schauder's estimates	Sketch of proofs	Thanks O
Supercritica	al Case: $\alpha \in$	(0, 1)			

• Supercritical case: If $\alpha \in (0, 1)$, then

$$\partial_t u = \mathscr{L}^{(\alpha)}_{\kappa,\sigma} u + b \cdot \nabla u + f, \ u(0) = 0,$$

with

$$\mathscr{L}^{(\alpha)}_{\kappa,\sigma}u(t,x) := \int_{\mathbb{R}^d} \Big(u(t,x+\sigma(t,x)z) - u(t,x) \Big) \kappa(t,x,z) \nu^{(\alpha)}(\mathrm{d} z).$$

When $\alpha \in (0,1),$ the drift term will play the important role instead of the diffusion term.

Singular Lévy measures	Aims and Assumptions	The Littlewood-Paley characteristic of Hölder spaces	Schauder's estimates	Sketch of proofs	Thanks
000000	00000	00000	000	0000000	0
Previous res	aults				

2009 (Bass) Consider the elliptic equation $\mathcal{L}u = f$, where $\alpha \in (0, 2)$ and

$$\mathscr{L}u = \int_{\mathbb{R}^d} \left(u(x+z) - u(x) - z \mathbf{1}_{\{|z| \leqslant 1\}} \mathbf{1}_{\alpha \in [1,2)} \cdot \nabla u(x) \right) \frac{\kappa(x,z)}{|z|^{d+\alpha}} \mathrm{d}z$$

2012 (Silvestrei) Consider the following parabolic equation:

$$\partial_t u + b \cdot \nabla u + (-\Delta)^{\alpha/2} = f,$$

where $\alpha \in (0, 1)$ and b is bounded but not necessarily divergence free.

2018 (Zhang, Zhao) Consider

$$\partial_t u = \mathscr{L} u + b \cdot \nabla u + f,$$

where b is bounded globally Hölder function and

$$\mathscr{L}u = \int_{\mathbb{R}^d} (u(x+z) - u(x) - z^{(\alpha)} \cdot \nabla u(x)) \frac{\kappa(x,z)}{|z|^{d+\alpha}} dz$$

with $\alpha \in (0,2)$ and $z^{(\alpha)} = z \mathbf{1}_{\{|z| \leqslant 1\}} \mathbf{1}_{\alpha=1} + z \mathbf{1}_{\alpha \in (1,2)}$.

2019 (Chaudru de Raynal, Menozzi, Priola) Consider

$$\partial_t u + \mathscr{L}u + b \cdot \nabla u = -f, u(T) = g,$$

where b is unbounded local Hölder function and

$$\mathscr{L}u = \int_{\mathbb{R}^d} (u(x+z) - u(x))\nu(\mathrm{d}z)$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

with singular Lévy measure ν and $\alpha \in (1/2, 1)$.

Singular Lévy measures	Aims and Assumptions	The Littlewood-Paley characteristic of Hölder spaces	Schauder's estimates	Sketch of proofs	Thanks
000000	00000	00000	000	0000000	0

Assumptions on diffuision coeffients

Recall

$$\partial_t u = \mathscr{L}^{(\alpha)}_{\kappa,\sigma} u + b \cdot \nabla u + f, \ u(0) = 0,$$
(2.2)

where

$$\mathscr{L}_{\kappa,\sigma}^{(\alpha)}u(t,x) := \int_{\mathbb{R}^d} (u(t,x+\sigma(t,x)z) - u(t,x) - \sigma(t,x)z^{(\alpha)} \cdot \nabla u)\kappa(t,x,z)\nu^{(\alpha)}(\mathrm{d}z).$$

 $(\mathbf{H}_{\kappa}^{\beta})$ For some $c_0 \ge 1$ and $\beta \in (0, 1)$, it holds that for all $x, z \in \mathbb{R}^d$,

$$c_0^{-1} \leqslant \kappa(t,x,z) \leqslant c_0, \ [\kappa(t,\cdot)]_{\mathbf{C}^\beta} := \sup_{h} \frac{\|\kappa(t,\cdot+h,z)) - \kappa(t,\cdot,z)\|_{\infty}}{|h|^{\beta}} \leqslant c_0,$$

and in the case of $\alpha = 1$,

$$\int_{r \leq |z| \leq R} z \kappa(t, x, z) \nu^{(\alpha)}(\mathrm{d}z) = 0 \text{ for every } 0 < r < R < \infty.$$

 $(\mathbf{H}_{\sigma}^{\gamma})$ For some $c_0 \ge 1$ and $\gamma \in (0, 1]$, it holds that for all $x, \xi \in \mathbb{R}^d$,

$$|c_0^{-1}|\xi|^2\leqslant \xi^T\sigma(t,x)\xi\leqslant c_0|\xi|^2, \ |\sigma(t,x)-\sigma(t,y)|\leqslant c_0|x-y|^\gamma.$$

・

Singular Lévy measures	Aims and Assumptions	The Littlewood-Paley characteristic of Hölder spaces	Schauder's estimates	Sketch of proofs	Thanks
000000	00000	00000	000	0000000	0
1					

Assumptions on drift coefficients

 (\mathbf{H}_b^{β}) For some $c_0 \ge 1$ and $\beta \in (0, 1)$, it holds that for all $t \in \mathbb{R}$,

$$|b(t,0)| \leqslant c_0, \ \ [b(t,\cdot)]_{\mathbb{C}^{eta}} := \sup_{0 < |h| \leqslant 1} rac{\|b(t,\cdot+h) - b(t,\cdot)\|_{\infty}}{|h|^{eta}} \leqslant c_0.$$

That is the Local Hölder regularity.

• Here, b is not necessarily bounded in x. For example, b(x) = x satisfies

$$[b]_{\mathbb{C}^s} < \infty, \ \forall s \in (0,1).$$

It is related to the nonlocal Ornstein-Uhlenbeck operator:

$$\Delta^{\alpha/2} - x \cdot \nabla.$$

• For any fixed x, function $t \to b(t, x)$ is bounded because

$$|b(t,x) - b(t,y)| \leq [b(t,\cdot)]_{\mathbb{C}^{\beta}} |x - y| \mathbf{1}_{\{|x-y| > 1\}} + [b(t,\cdot)]_{\mathbb{C}^{\beta}} |x - y|^{\beta} \mathbf{1}_{\{|x-y| \leq 1\}}.$$
(2.3)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Singular Lévy measures	Aims and Assumptions	The Littlewood-Paley characteristic of Hölder spaces	Schauder's estimates	Sketch of proofs	Thanks
000000	00000	00000	000	0000000	0

Littlewood-Paley Decomposition

• Let ϕ_0 be a radial C^{∞} -function on \mathbb{R}^d with

 $\phi_0(\xi) = 1$ for $\xi \in B_1$ and $\phi_0(\xi) = 0$ for $\xi \notin B_2$.

For $\xi = (\xi_1, \cdots, \xi_n) \in \mathbb{R}^d$ and $j \in \mathbb{N}$, define

$$\phi_j(\xi) := \phi_0(2^{-j}\xi) - \phi_0(2^{-(j-1)}\xi)$$

• It is easy to see that for $j \in \mathbb{N}, \phi_j(\xi) = \phi_1(2^{-(j-1)}\xi) \geqslant 0$ and

$$\operatorname{supp}\phi_j \subset B_{2^{j+1}} \setminus B_{2^{j-1}}, \ \sum_{j=0}^k \phi_j(\xi) = \phi_0(2^{-k}\xi) \to 1, \ k \to \infty$$

Singular Lévy measures	Aims and Assumptions	The Littlewood-Paley characteristic of Hölder spaces	Schauder's estimates	Sketch of proofs	Thanks
000000	00000	0000	000	0000000	0

Littlewood-Paley Decomposition

• If
$$|j - j'| \ge 2$$
, then $\operatorname{supp}\phi_1(2^{-j} \cdot) \cap \operatorname{supp}\phi_1(2^{-j'} \cdot) = \emptyset$.

Singular Lévy measures	Aims and Assumptions	The Littlewood-Paley characteristic of Hölder spaces	Schauder's estimates	Sketch of proofs	Thanks
000000	00000	00000	000	0000000	0

Block operators

• For $j \in \mathbb{N}_0$, the block operator Δ_j is defined on $\mathscr{S}'(\mathbb{R}^d)$ by

$$\Delta_j f(x) := (\phi_j \hat{f})^{\check{}}(x) = \check{\phi}_j * f(x) = 2^{j-1} \int_{\mathbb{R}^d} \check{\phi}_1(2^{j-1}y) f(x-y) \mathrm{d}y.$$

• For $j \in \mathbb{N}_0$, by definition it is easy to see that

$$\Delta_j = \Delta_j \widetilde{\Delta}_j$$
, where $\widetilde{\Delta}_j := \Delta_{j-1} + \Delta_j + \Delta_{j+1}$ with $\Delta_{-1} \equiv 0$,

and Δ_j is symmetric in the sense that

$$\langle \Delta_j f, g \rangle = \langle f, \Delta_j g \rangle.$$

Noticing that

$$\sum_{j=0}^{k} \Delta_j f = 2^{dk} \int_{\mathbb{R}^d} \check{\phi}_0(2^k(x-y)) f(y) \mathrm{d}y \to f, \tag{3.1}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

we have the Littlewood-Paley decomposition of f:

$$f = \sum_{j=0}^{\infty} \Delta_j f$$

Singular Lévy measures	Aims and Assumptions	The Littlewood-Paley characteristic of Hölder spaces	Schauder's estimates	Sketch of proofs	Thanks
000000	00000	00000	000	0000000	0

The Littlewood-Paley characteristic of Hölder spaces

Then, we have the following definition.

Definition 6 (Besov spaces)

For $s \in \mathbb{R}$, the Besov space $\mathbf{B}_{\infty,\infty}^s$ is defined as the set of all $f \in \mathscr{S}'(\mathbb{R}^d)$ such that

$$||f||_{\mathbf{B}^s_{\infty,\infty}} := \sup_{j \ge -1} 2^{js} ||\Delta_j f||_{\infty} < \infty.$$

Proposition 7 (H. Triebel)

For any $0 < s \notin \mathbb{N}_0$, it holds that

$$\|f\|_{\mathbf{B}^{s}_{\infty,\infty}} \asymp \|f\|_{\mathbf{C}^{s}},$$

where \mathbf{C}^s is the usual Hölder space. For $n \in \mathbb{N}$, we have $\mathbf{C}^n \subset \mathbf{B}_{\infty,\infty}^n$.

Proposition 8 (Interpolation inequalities)

For any 0 < s < t, there is a constant c > 0 such that for any $\varepsilon \in (0, 1)$,

$$\|f\|_{\mathbf{B}^{s}_{\infty,\infty}} \leqslant \|f\|_{\mathbf{B}^{t}_{\infty,\infty}}^{s/t} \|f\|_{\mathbf{B}^{0}_{\infty,\infty}}^{(t-s)/t} \leqslant \varepsilon \|f\|_{\mathbf{B}^{t}_{\infty,\infty}} + c\varepsilon^{-s/(t-s)} \|f\|_{\infty}.$$

Singular Lévy measures	Aims and Assumptions	The Littlewood-Paley characteristic of Hölder spaces	Schauder's estimates	Sketch of proofs	Thanks
000000	00000	00000	000	0000000	0

Part 2: Main results

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Singular Lévy measures	Aims and Assumptions	The Littlewood-Paley characteristic of Hölder spaces	Schauder's estimates	Sketch of proofs	Thanks
000000	00000	00000	000	0000000	0
Classical sol	utions				

Definition 9 (Classical solutions)

We call a bounded continuous function u defined on $\mathbb{R}_+ \times \mathbb{R}^d$ a classical solution of PDE (2.2) if for some $\varepsilon \in (0, 1)$,

$$u \in \cap_{T>0} L^{\infty}([0,T]; \mathbf{C}^{\alpha \vee 1+\varepsilon})$$

with $\nabla u(\cdot, x) \in C([0, \infty))$ for any $x \in \mathbb{R}^d$, and for all $(t, x) \in [0, \infty) \times \mathbb{R}^d$,

$$u(t,x) = \int_0^t \left(\mathscr{L}_{\kappa,\sigma}^{(\alpha)} u + b \cdot \nabla u + f \right)(s,x) \mathrm{d}s.$$

Lemma 10 (Maximum principles)

Assume that $\sigma(t, x)$ and $\kappa(t, x, z) \ge 0$ are bounded measurable functions. Let b(t, x) be measurable function and bounded in $t \in \mathbb{R}_+$ for any fixed $x \in \mathbb{R}^d$. For any T > 0 and classical solution u of (2.2) in the sense of Definitions 9, it holds that

 $||u||_{L^{\infty}([0,T])} \leq T ||f||_{L^{\infty}([0,T])}.$

Singular Lévy measures	Aims and Assumptions	The Littlewood-Paley characteristic of Hölder spaces	Schauder's estimates	Sketch of proofs	Thanks
000000	00000	00000	000	0000000	0
Schauder's	estimates				

Theorem 11 (Schauder's estimates)

Suppose that $\gamma \in (0, 1]$, $\alpha \in (1/2, 2)$ and $\beta \in ((1 - \alpha) \lor 0, (\alpha \land 1)\gamma)$. Under conditions $(\mathbf{H}_{\beta}^{\beta})$, $(\mathbf{H}_{\sigma}^{\gamma})$, and (\mathbf{H}_{b}^{β}) , for any T > 0, there is a constant $c = c(T, c_{0}, d, \alpha, \beta, \gamma) > 0$ such that for any classical solution u of PDE (2.2),

$$\|u\|_{L^{\infty}([0,T],\mathbf{C}^{\alpha+\beta})} \leqslant c \|f\|_{L^{\infty}([0,T],\mathbf{C}^{\beta})}.$$

- Since we consider classical solutions, α + β must be larger than 1 such that ∇u is meaningful. In addition, we must assume β < α for the moment problem. Thus, 1 − α < β < α.
- The critical case $\alpha + \beta = 1$ is a technical problem. We have no ideas to fix it.

Singular Lévy measures	Aims and Assumptions	The Littlewood-Paley characteristic of Hölder spaces	Schauder's estimates	Sketch of proofs	Thanks
000000	00000	00000	000	0000000	0
Existences					

Theorem 12 (Existences)

Suppose that $\gamma \in (0, 1]$, $\alpha \in (1/2, 2)$ and $\beta \in ((1 - \alpha) \lor 0, (\alpha \land 1)\gamma)$. Under conditions $(\mathbf{H}_{\kappa}^{\beta})$, $(\mathbf{H}_{\sigma}^{\gamma})$, and (\mathbf{H}_{b}^{β}) , for any $f \in \bigcap_{T>0} L^{\infty}([0, T], \mathbf{C}^{\beta})$, there is a unique classical solution u for (2.2) in the sense of Definition 9 such that for any T > 0 and some constant c > 0,

 $\|u\|_{L^{\infty}([0,T],\mathbf{C}^{\alpha+\beta})} \leqslant c \|f\|_{L^{\infty}([0,T],\mathbf{C}^{\beta})}, \ \|u\|_{L^{\infty}(0,T)} \leqslant c \|f\|_{L^{\infty}(0,T)}.$

Singular Lévy measures	Aims and Assumptions	The Littlewood-Paley characteristic of Hölder spaces	Schauder's estimates	Sketch of proofs	Thanks
000000	00000	00000	000	●000000	0

Part 3: Sketch of proofs

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Singular Lévy measures	Aims and Assumptions	The Littlewood-Paley characteristic of Hölder spaces	Schauder's estimates	Sketch of proofs	Thanks O
Main technics					

Step 1 Using perturbation argument to prove the Schauder estimate under $(\mathbf{H}_{\kappa}^{\beta})$, $(\mathbf{H}_{\sigma}^{\beta})$ and

 $[b(t,\cdot)]_{\mathbf{C}^{\beta}} \leqslant c_0, \forall t \ge 0.$

- Freeze the coefficients along the characterization curve.
- Use Duhamel's formulas. (Heat kernel estimates of integral form, Littlewood-Paley's decomposition, and interpolation inequalities.)

- **Step 2** Using cut-off technics to obatin the desired Schauder estimate.
- Step 3 By Schauder's estimates, using the continuity method and the vanishing viscosiry approach to get existences of the classical solutions.

Singular Lévy measures	Aims and Assumptions	The Littlewood-Paley characteristic of Hölder spaces	Schauder's estimates	Sketch of proofs	Thanks
000000	00000	00000	000	000000	0
	• .•				

The characterization curve

• Fix $x_0 \in \mathbb{R}^d$. Let θ_t solve the following ODE in \mathbb{R}^d :

$$\dot{\theta}_t = -b(t, \theta_t), \ \theta_0 = x_0.$$

Define

$$\begin{split} \tilde{u}(t,x) &:= u(t,x+\theta_t), \ \ \tilde{f}(t,x) := f(t,x+\theta_t), \ \ \tilde{\sigma}(t,x) := \sigma(t,x+\theta_t), \\ \tilde{\kappa}(t,x,z) &:= \kappa(t,x+\theta_t,z), \ \ \tilde{\sigma}_0(t) := \tilde{\sigma}(t,0), \ \ \tilde{\kappa}_0(t,z) := \tilde{\kappa}(t,0,z). \end{split}$$
 and

$$\tilde{b}(t,x) := b(t,x+\theta_t) - b(t,\theta_t).$$

• It is easy to see that \tilde{u} satisfies the following equation:

$$\partial_t \tilde{u} = \mathscr{L}^{(\alpha)}_{\tilde{\kappa}_0, \tilde{\sigma}_0} u + \tilde{b} \cdot \nabla \tilde{u} + \left(\mathscr{L}^{(\alpha)}_{\tilde{\kappa}, \tilde{\sigma}} - \mathscr{L}^{(\alpha)}_{\tilde{\kappa}_0, \tilde{\sigma}_0} \right) \tilde{u} + \tilde{f}.$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Singular Lévy measures	Aims and Assumptions	The Littlewood-Paley characteristic of Hölder spaces	Schauder's estimates	Sketch of proofs	Thanks O
Heat kernel	${f s} p_{s,t}^{ ilde\kappa_0, ilde\sigma_0}(x)$				

• For the case of $\alpha \in (0, 1)$. Let N(dt, dz) be the Possion random measure with intensity measure

$$\tilde{\kappa}_0(t,z)\nu^{(\alpha)}(\mathrm{d}z)\mathrm{d}t.$$

For $0 \leq s \leq t$, define

$$X_{s,t}^{\tilde{\kappa}_0,\tilde{\sigma}_0} := \int_s^t \int_{\mathbb{R}^d} \tilde{\sigma}_0(r) z N(\mathrm{d} r, \mathrm{d} z),$$

whose generator is $\mathscr{L}^{(\alpha)}_{\tilde{\kappa}_0,\tilde{\sigma}_0}$.

Under our conditions, the random variable X^{κ˜₀,σ˜₀}_{s,t} has a smooth density p^{κ˜₀,σ˜₀}_{s,t}(x). Moreover, for any β ∈ [0, α) and m ∈ N₀, there exists a positive constant c such that for all 0 ≤ s < t,

$$\int_{\mathbb{R}^d} |x|^{\beta} |\nabla^m p_{s,t}^{\tilde{\kappa}_0, \tilde{\sigma}_0}(x)| \mathrm{d}x \leqslant c(t-s)^{(\beta-m)/\alpha}, \tag{5.1}$$

where the constant c depends on $d, m, c_0, \nu^{(\alpha)}, \beta, \alpha$.

Singular Lévy measures	Aims and Assumptions	The Littlewood-Paley characteristic of Hölder spaces	Schauder's estimates	Sketch of proofs	Thanks O			
Duhamel's f	Duhamel's formulas							

• By Duhamel's formula and operating the block operator Δ_j on both sides, we have

$$\Delta_{j}\tilde{u}(t,x) = \int_{0}^{t} \Delta_{j} P_{s,t} \left(\mathscr{L}_{\tilde{\kappa},\tilde{\sigma}}^{(\alpha)} - \mathscr{L}_{\tilde{\kappa}_{0},\tilde{\sigma}_{0}}^{(\alpha)} \right) \tilde{u}(s,x) \mathrm{d}s + \int_{0}^{t} \Delta_{j} P_{s,t} (\tilde{b} \cdot \nabla \tilde{u})(s,x) \mathrm{d}s + \int_{0}^{t} \Delta_{j} P_{s,t} \tilde{f}(s,x) \mathrm{d}s,$$
(5.2)

where

$$\int_0^t \mathbf{P}_{s,t} f(s,x) \mathrm{d}s = \int_0^t \int_{\mathbb{R}^d} p_{s,t}^{\tilde{\kappa}_0, \tilde{\sigma}_0}(y) f(s,x+y) \mathrm{d}y \mathrm{d}s.$$
(5.3)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

000000 00000 00000 0000	Singular Lévy measures	Aims and Assumptions	The Littlewood-Paley characteristic of Hölder spaces	Schauder's estimates	Sketch of proofs	Thanks
	000000	00000	00000	000	0000000	0

Convolution to Product

- Recall $||u(t)||_{\mathbf{B}^{\alpha}_{\infty,\infty}} = \sup_{j \ge 0} 2^{\alpha j} ||\Delta_j u(t)||_{\infty}.$
- Noticing

$$|\Delta_j u(t,\theta_t)| = |\Delta_j \tilde{u}(t,0)|,$$

we get ||∆_ju(t)||_∞ by taking the supremum of the θ_t's initial data x₀ for |∆_jũ(t, 0)|.
Therefore, we only need to consider values at the origin point:

$$\begin{split} \Delta_{j}\tilde{u}(t,0) &= \int_{0}^{t} \Delta_{j} P_{s,t} \left(\mathscr{L}_{\tilde{\kappa},\tilde{\sigma}}^{(\alpha)} - \mathscr{L}_{\tilde{\kappa}_{0},\tilde{\sigma}_{0}}^{(\alpha)} \right) \tilde{u}(s,0) \mathrm{d}s \\ &+ \int_{0}^{t} \Delta_{j} P_{s,t} (\tilde{b} \cdot \nabla \tilde{u})(s,0) \mathrm{d}s + \int_{0}^{t} \Delta_{j} P_{s,t} \tilde{f}(s,0) \mathrm{d}s. \end{split}$$
(5.4)

Here,

$$\int_{0}^{t} \Delta_{j} P_{s,t} f(s,0) \mathrm{d}s = \int_{0}^{t} \int_{\mathbb{R}^{d}} p_{s,t}^{\tilde{\kappa}_{0},\tilde{\sigma}_{0}}(y) \cdot \Delta_{j} f(s,y) \mathrm{d}y \mathrm{d}s.$$
(5.5)
Convolution \Longrightarrow Product

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Singular Lévy measures	Aims and Assumptions	The Littlewood-Paley characteristic of Hölder spaces	Schauder's estimates	Sketch of proofs	Thanks
000000	00000	00000	000	000000	0

A crucial Lemma for heat kernels

Lemma 13 (Heat kernel estimates)

For any T > 0, $\beta \in [0, \alpha)$, and $n \in \mathbb{N}_0$, there is a constant $c = (d, m, c_0, \nu^{(\alpha)}, \beta, \alpha)$ such that for any $s, t \in [0, T]$ and $j \in \mathbb{N}$,

$$\int_{\mathbb{R}^d} |x|^{\beta} |\Delta_j p_{s,t}^{\tilde{\kappa}_0, \tilde{\sigma}_0}(x)| \mathrm{d}x \leqslant c 2^{(m-n)j} (t-s)^{-\frac{n}{\alpha}} ((t-s)^{\frac{1}{\alpha}} + 2^{-j})^{\beta},$$
(5.6)

and

$$\int_{0}^{t} \int_{\mathbb{R}^{d}} |x|^{\beta} |\Delta_{j} p_{s,t}^{\tilde{\kappa}_{0},\tilde{\sigma}_{0}}(x)| \mathrm{d}x \mathrm{d}s \leqslant c 2^{-(\alpha+\beta)j}.$$
(5.7)

- Note We use the regularity of time to get the regularity of space.
- Under $(\mathbf{H}_{\kappa}^{\beta})$, $(\mathbf{H}_{\sigma}^{\beta})$ and (\mathbf{H}_{b}^{β}) , we have

$$\begin{cases} |\tilde{\kappa}(t,x,z) - \tilde{\kappa}_{0}(t,z)| \leq [\kappa(t,\cdot,z)]_{\mathbf{C}^{\beta}} |x|^{\beta} \leq c_{0} |x|^{\beta}; \\ |\tilde{\sigma}(t,x) - \tilde{\sigma}_{0}(t)| \leq [\sigma(t,\cdot)]_{\mathbf{C}^{\gamma}} |x|^{\gamma} \leq c_{0} |x|^{\gamma}; \\ |\tilde{b}(t,x)| \leq [b(t,\cdot)]_{\mathbf{C}^{\beta}} |x|^{\beta} \leq c_{0} |x|^{\beta}. \end{cases}$$

$$(5.8)$$

Singular Lévy measures	Aims and Assumptions	The Littlewood-Paley characteristic of Hölder spaces	Schauder's estimates	Sketch of proofs	Thanks
000000	00000	00000	000	0000000	•

Thank you for your attention!

Thank Zimo Hao for his advices to this presentation.