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Part 1: Introduction
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Lévy measures

Definition 1 (Lévy measures)

ν is a Lévy measure on Rd, if it is a σ-finte (positive) measure such that

ν({0}) = 0,
ˆ
Rd

(
1 ∧ |x|2

)
ν(dx) < +∞.

Definition 2 (α-stable Lévy measures)

For α ∈ (0, 2), Lévy measure ν(α) is an α-stable Lévy measure, if it has the polar
coordinates form

ν(α)(A) =
ˆ ∞

0

(ˆ
Sd−1

1A(rθ)Σ(dθ)
r1+α

)
dr, A ∈ B(Rd),

where Σ is a finite measure over the unit sphere Sd−1 (called spherical measure of
ν(α)).
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α-stable Lévy measures

Scaling property ν(α)(d(λz)) = λ−αν(α)(dz) for any λ > 0.

Moments property For any γ1 > α > γ2 > 0,
ˆ
Rd

(|z|γ1 ∧ |z|γ2 )ν(α)(dz) <∞.

Definition 3 (Non-degenerate Lévy measures)

One says that an α-stable Lévy measure ν(α) is non-degenerate if
ˆ
Sd−1
|θ0 · θ|αΣ(dθ) > 0 for every θ0 ∈ Sd−1.
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Non-degenerate α-stable Lévy measures

Example 4 (Standard α-stable Lévy measures)

If Σ is rotationally invariant with Σ(Sd−1) = |Sd−1| , then ν(α) is the standard or
strict α-stable Lévy measure and

ν(α)(dy) = dy
|y|d+α .

The d-dimensional Lévy process associated with this Lévy mesaure is called d-
dimensional α-stable process.

IfWt = (W 1
t , · · · ,W d

t ) is a d-dimensional Browinian Motion, thenW i
t are i.i.d

1-dimensional Browinian Motions.

Let Lt = (L1
t , · · · , Ldt ) be a d-dimensional α-stable process. Lit may not be

independet or 1-dimensional standard α-stable processes.

Question

If Lit, i = 1, · · · , d are i.i.d 1-dimensional standard α-stable processes, then what is
Lt = (L1

t , · · · , Ldt )?
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If Σ is rotationally invariant with Σ(Sd−1) = |Sd−1| , then ν(α) is the standard or
strict α-stable Lévy measure and
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ν(α)(dy) = dy
|y|d+α .
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Non-degenerate α-stable Lévy measures

Example 5 (Cylindrical α-stable Lévy measures)

If Σ =
∑d

k=1 δek , where ek = (0, · · · , 1kth , · · · , 0), then

ν(α(dx) =
d∑
k=1

δek (dx) dxk
|xk|α+1 ,

called cylindrical α-stable Lévy measures. Moreover, this Lévy measure is associated
with a d-dimensional Lévy process (L1

t , L
2
t , · · · , Ldt ),whereL1

t , L
2
t , · · · , Ldt are i.d.d

1-dimensional standard α-stable processes.
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Infinitesimal generators

Infinitesimal generators

Standard α-stable Lévy process with α ∈ (0, 1):

L f(x) = p.v.
ˆ
Rd

f(x + z)− f(x)
|z|d+α dz = ∆α/2f(x).

Cylindrical α-stable Lévy process with α ∈ (0, 1):

L f(x) =
d∑
i=1

p.v.
ˆ
R

f(x + zei)− f(x)
|z|1+α dz,

where ei = (0, . . . , 1ith , . . . , 0).
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Fourier’s multipliers

Fourier’s multipliers

Standard α-stable Lévy process:

F (L f)(ξ) = |ξ|αFf(ξ) = F (∆
α
2 f)(ξ),

where φ(ξ) := |ξ|α ∈ C∞(Rd \ {0}).

Cylindrical α-stable Lévy process:

F (L f)(ξ) =
d∑
i=1

|ξi|αFf(ξ),

where φ(ξ) :=
∑d

i=1 |ξi|
α ∈ C∞(Rd \ ∪di=1{xi = 0}).

Note It is more difficult to deal with cylindrical Lévy measues than standard
Lévy measues.
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Our work

We want to show Schauder’s estimates for the following nonlocal equations:

∂tu = L (α)
κ,σ u+ b · ∇u+ f, u(0) = 0, (2.1)

where L (α)
κ,σ is an α-stable-like operator with the form:

L (α)
κ,σ u(t, x) :=

ˆ
Rd

(u(t, x+ σ(t, x)z)− u(t, x)

− σ(t, x)z(α) · ∇u)κ(t, x, z)ν(α)(dz),

where ν(α) is a non-degenerateα-stabe Lévy measure and z(α) := z1{|z|61}1α=1+
z1α∈(1,2).

Schauder’s estimates:
‖u‖Cα+β 6 c‖f‖Cβ .

PDE Schauder’s estimates play a basic role in constructing classical solutions for quasilin-
ear PDEs.

SDE The Schauder estimate can be used to solve the exisitence and uniqueness of the
solution for SDE. (The Zvonkin transform)
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Supercritical Case: α ∈ (0, 1)

Supercritical case: If α ∈ (0, 1), then

∂tu = L (α)
κ,σ u+ b · ∇u+ f, u(0) = 0,

with

L (α)
κ,σ u(t, x) :=

ˆ
Rd

(
u(t, x+ σ(t, x)z)− u(t, x)

)
κ(t, x, z)ν(α)(dz).

When α ∈ (0, 1), the drift term will play the important role instead of the diffu-
sion term.
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Previous results

2009 (Bass) Consider the elliptic equation Lu = f , where α ∈ (0, 2) and

Lu =
ˆ
Rd

(u(x+ z)− u(x)− z1{|z|61}1α∈[1,2) · ∇u(x))
κ(x, z)
|z|d+α dz.

2012 (Silvestrei) Consider the following parabolic equation:

∂tu+ b · ∇u+ (−∆)α/2 = f,

where α ∈ (0, 1) and b is bounded but not necessarily divergence free.

2018 (Zhang, Zhao) Consider
∂tu = Lu+ b · ∇u+ f,

where b is bounded globally Hölder function and

Lu =
ˆ
Rd

(u(x+ z)− u(x)− z(α) · ∇u(x))
κ(x, z)
|z|d+α dz

with α ∈ (0, 2) and z(α) = z1{|z|61}1α=1 + z1α∈(1,2).

2019 (Chaudru de Raynal, Menozzi, Priola) Consider

∂tu+ Lu+ b · ∇u = −f, u(T ) = g,

where b is unbounded local Hölder function and

Lu =
ˆ
Rd

(u(x+ z)− u(x))ν(dz)

with singular Lévy measure ν and α ∈ (1/2, 1).
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Assumptions on diffuision coeffients

Recall

∂tu = L (α)
κ,σu+ b · ∇u+ f, u(0) = 0, (2.2)

where

L (α)
κ,σu(t, x) :=

ˆ
Rd

(u(t, x+ σ(t, x)z)− u(t, x)− σ(t, x)z(α) · ∇u)κ(t, x, z)ν(α)(dz).

(Hβ
κ) For some c0 > 1 and β ∈ (0, 1), it holds that for all x, z ∈ Rd,

c−1
0 6 κ(t, x, z) 6 c0, [κ(t, ·)]Cβ := sup

h

‖κ(t, ·+ h, z))− κ(t, ·, z)‖∞
|h|β 6 c0,

and in the case of α = 1,
ˆ
r6|z|6R

zκ(t, x, z)ν(α)(dz) = 0 for every 0 < r < R <∞.

(Hγ
σ) For some c0 > 1 and γ ∈ (0, 1], it holds that for all x, ξ ∈ Rd,

c−1
0 |ξ|

2 6 ξTσ(t, x)ξ 6 c0|ξ|2, |σ(t, x)− σ(t, y)| 6 c0|x− y|γ .
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Assumptions on drift coeffients

(Hβ
b ) For some c0 > 1 and β ∈ (0, 1), it holds that for all t ∈ R,

|b(t, 0)| 6 c0, [b(t, ·)]Cβ := sup
0<|h|61

‖b(t, ·+ h)− b(t, ·)‖∞
|h|β 6 c0.

That is the Local Hölder regularity.

Here, b is not necessarily bounded in x. For example, b(x) = x satisfies

[b]Cs <∞, ∀s ∈ (0, 1).

It is related to the nonlocal Ornstein-Uhlenbeck operator:

∆α/2 − x · ∇.

For any fixed x, function t→ b(t, x) is bounded because

|b(t, x)− b(t, y)| 6[b(t, ·)]Cβ |x− y|1{|x−y|>1}

+ [b(t, ·)]Cβ |x− y|
β1{|x−y|61}.

(2.3)
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Littlewood-Paley Decomposition

Let φ0 be a radial C∞-function on Rd with

φ0(ξ) = 1 for ξ ∈ B1 and φ0(ξ) = 0 for ξ /∈ B2.

For ξ = (ξ1, · · · , ξn) ∈ Rd and j ∈ N, define

φj(ξ) := φ0(2−jξ)− φ0(2−(j−1)ξ).

It is easy to see that for j ∈ N, φj(ξ) = φ1(2−(j−1)ξ) > 0 and

suppφj ⊂ B2j+1 \B2j−1 ,

k∑
j=0

φj(ξ) = φ0(2−kξ)→ 1, k →∞.
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Littlewood-Paley Decomposition

I If |j − j′| > 2, then suppφ1(2−j ·) ∩ suppφ1(2−j
′
·) = ∅.

x

y

B2j+1

B2j

φ j

φj−1
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Block operators

For j ∈ N0, the block operator ∆j is defined on S ′(Rd) by

∆jf(x) := (φj f̂ )̌ (x) = φ̌j ∗ f(x) = 2j−1
ˆ
Rd
φ̌1(2j−1y)f(x− y)dy.

For j ∈ N0, by definition it is easy to see that

∆j = ∆j∆̃j , where ∆̃j := ∆j−1 + ∆j + ∆j+1 with ∆−1 ≡ 0,

and ∆j is symmetric in the sense that

〈∆jf, g〉 = 〈f,∆jg〉.

Noticing that

k∑
j=0

∆jf = 2dk
ˆ
Rd
φ̌0(2k(x− y))f(y)dy → f, (3.1)

we have the Littlewood-Paley decomposition of f :

f =
∞∑
j=0

∆jf.
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The Littlewood-Paley characteristic of Hölder spaces

Then, we have the following definition.

Definition 6 (Besov spaces)

For s ∈ R, the Besov space Bs
∞,∞ is defined as the set of all f ∈ S ′(Rd) such that

‖f‖Bs∞,∞ := sup
j>−1

2js‖∆jf‖∞ <∞.

Proposition 7 (H. Triebel)

For any 0 < s /∈ N0, it holds that

‖f‖Bs∞,∞ � ‖f‖Cs ,

where Cs is the usual Hölder space. For n ∈ N, we have Cn ⊂ Bn
∞,∞.

Proposition 8 (Interpolation inequalities)

For any 0 < s < t, there is a constant c > 0 such that for any ε ∈ (0, 1),

‖f‖Bs∞,∞ 6 ‖f‖s/tBt∞,∞
‖f‖(t−s)/t

B0
∞,∞

6 ε‖f‖Bt∞,∞ + cε−s/(t−s)‖f‖∞.
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Part 2: Main results
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Classical solutions

Definition 9 (Classical solutions)

We call a bounded continuous function u defined on R+ × Rd a classical solution of
PDE (2.2) if for some ε ∈ (0, 1),

u ∈ ∩T>0L
∞([0, T ]; Cα∨1+ε)

with∇u(·, x) ∈ C([0,∞)) for any x ∈ Rd, and for all (t, x) ∈ [0,∞)× Rd,

u(t, x) =
ˆ t

0

(
L (α)
κ,σ u+ b · ∇u+ f

)
(s, x)ds.

Lemma 10 (Maximum principles)

Assume that σ(t, x) and κ(t, x, z) > 0 are bounded measurable functions. Let b(t, x)
be measurable function and bounded in t ∈ R+ for any fixed x ∈ Rd. For any T > 0
and classical solution u of (2.2) in the sense of Definitions 9, it holds that

‖u‖L∞([0,T ]) 6 T‖f‖L∞([0,T ]).
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Schauder’s estimates

Theorem 11 (Schauder’s estimates)

Suppose that γ ∈ (0, 1], α ∈ (1/2, 2) and β ∈ ((1 − α) ∨ 0, (α ∧ 1)γ). Un-
der conditions (Hβ

κ), (Hγ
σ), and (Hβ

b ), for any T > 0, there is a constant c =
c(T, c0, d, α, β, γ) > 0 such that for any classical solution u of PDE (2.2),

‖u‖L∞([0,T ],Cα+β) 6 c‖f‖L∞([0,T ],Cβ).

Since we consider classical solutions, α+ β must be larger than 1 such that∇u
is meaningful. In addition, we must assume β < α for the moment problem.
Thus, 1− α < β < α.

The critical case α+ β = 1 is a technical problem. We have no ideas to fix it.
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Existences

Theorem 12 (Existences)

Suppose that γ ∈ (0, 1], α ∈ (1/2, 2) and β ∈ ((1 − α) ∨ 0, (α ∧ 1)γ). Under
conditions (Hβ

κ), (Hγ
σ), and (Hβ

b ), for any f ∈ ∩T>0L
∞([0, T ],Cβ), there is a unique

classical solution u for (2.2) in the sense of Definition 9 such that for any T > 0 and
some constant c > 0,

‖u‖L∞([0,T ],Cα+β) 6 c‖f‖L∞([0,T ],Cβ), ‖u‖L∞(0,T ) 6 c‖f‖L∞(0,T ).
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Part 3: Sketch of proofs
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Main technics

Step 1 Using perturbation argument to prove the Schauder estimate under (Hβ
κ) , (Hβ

σ)
and

[b(t, ·)]Cβ 6 c0, ∀t > 0.

Freeze the coefficients along the characterization curve.
Use Duhamel’s formulas. (Heat kernel estimates of integral form, Littlewood-Paley’s
decomposition, and interpolation inequalities.)

Step 2 Using cut-off technics to obatin the desired Schauder estimate.

Step 3 By Schauder’s estimates, using the continuity method and the vanishing viscosiry
approach to get existences of the classical solutions.
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The characterization curve

Fix x0 ∈ Rd. Let θt solve the following ODE in Rd:

θ̇t = −b(t, θt), θ0 = x0.

Define

ũ(t, x) := u(t, x+ θt), f̃(t, x) := f(t, x+ θt), σ̃(t, x) := σ(t, x+ θt),

κ̃(t, x, z) := κ(t, x+ θt, z), σ̃0(t) := σ̃(t, 0), κ̃0(t, z) := κ̃(t, 0, z).

and

b̃(t, x) := b(t, x+ θt)− b(t, θt).

It is easy to see that ũ satisfies the following equation:

∂tũ = L (α)
κ̃0,σ̃0

u+ b̃ · ∇ũ+
(
L (α)
κ̃,σ̃ −L (α)

κ̃0,σ̃0

)
ũ+ f̃ .
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Heat kernels pκ̃0,σ̃0
s,t (x)

For the case of α ∈ (0, 1). Let N(dt, dz) be the Possion random measure with
intensity measure

κ̃0(t, z)ν(α)(dz)dt.

For 0 6 s 6 t, define

X κ̃0,σ̃0
s,t :=

ˆ t

s

ˆ
Rd
σ̃0(r)zN(dr, dz),

whose generator is L (α)
κ̃0,σ̃0

.

Under our conditions, the random variableX κ̃0,σ̃0
s,t has a smooth density pκ̃0,σ̃0

s,t (x).
Moreover, for any β ∈ [0, α) andm ∈ N0, there exists a positive constant c such
that for all 0 6 s < t,

ˆ
Rd
|x|β |∇mpκ̃0,σ̃0

s,t (x)|dx 6 c(t− s)(β−m)/α, (5.1)

where the constant c depends on d,m, c0, ν
(α), β, α.
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Duhamel’s formulas

By Duhamel’s formula and operating the block operator ∆j on both sides, we
have

∆j ũ(t, x) =
ˆ t

0
∆jPs,t

(
L (α)
κ̃,σ̃ −L (α)

κ̃0,σ̃0

)
ũ(s, x)ds

+
ˆ t

0
∆jPs,t(b̃ · ∇ũ)(s, x)ds+

ˆ t

0
∆jPs,tf̃(s, x)ds,

(5.2)

where
ˆ t

0
Ps,tf(s, x)ds =

ˆ t

0

ˆ
Rd
pκ̃0,σ̃0
s,t (y)f(s, x+ y)dyds. (5.3)
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Convolution to Product

Recall ‖u(t)‖Bα∞,∞ = supj>0 2αj‖∆ju(t)‖∞.

Noticing
|∆ju(t, θt)| = |∆j ũ(t, 0)|,

we get ‖∆ju(t)‖∞ by taking the supremum of the θt’s initial data x0 for |∆j ũ(t, 0)|.
Therefore, we only need to consider values at the origin point:

∆j ũ(t, 0) =
ˆ t

0
∆jPs,t

(
L (α)
κ̃,σ̃ −L (α)

κ̃0,σ̃0

)
ũ(s, 0)ds

+
ˆ t

0
∆jPs,t(b̃ · ∇ũ)(s, 0)ds+

ˆ t

0
∆jPs,tf̃(s, 0)ds.

(5.4)

Here,
ˆ t

0
∆jPs,tf(s, 0)ds =

ˆ t

0

ˆ
Rd
pκ̃0,σ̃0
s,t (y) ·∆jf(s, y)dyds.

Convolution =⇒ Product
(5.5)



Singular Lévy measures Aims and Assumptions The Littlewood-Paley characteristic of Hölder spaces Schauder’s estimates Sketch of proofs Thanks

A crucial Lemma for heat kernels

Lemma 13 (Heat kernel estimates)

For any T > 0, β ∈ [0, α), and n ∈ N0, there is a constant c = (d,m, c0, ν
(α), β, α)

such that for any s, t ∈ [0, T ] and j ∈ N,
ˆ
Rd
|x|β |∆jp

κ̃0,σ̃0
s,t (x)|dx 6 c2(m−n)j(t− s)−

n
α ((t− s)

1
α + 2−j)β , (5.6)

and
ˆ t

0

ˆ
Rd
|x|β |∆jp

κ̃0,σ̃0
s,t (x)|dxds 6 c2−(α+β)j . (5.7)

Note We use the regularity of time to get the regularity of space.

Under (Hβ
κ) , (Hβ

σ) and (Hβ
b ), we have

|κ̃(t, x, z)− κ̃0(t, z)| 6 [κ(t, ·, z)]Cβ |x|β 6 c0|x|β ;

|σ̃(t, x)− σ̃0(t)| 6 [σ(t, ·)]Cγ |x|γ 6 c0|x|γ ;

|b̃(t, x)| 6 [b(t, ·)]Cβ |x|β 6 c0|x|β .

(5.8)
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Thank you for your attention!
Thank Zimo Hao for his advices to this presentation.


	Singular Lévy measures
	Aims and Assumptions
	The Littlewood-Paley characteristic of Hölder spaces
	Schauder's estimates
	Sketch of proofs
	Thanks

